If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+151x+3000=0
a = 1; b = 151; c = +3000;
Δ = b2-4ac
Δ = 1512-4·1·3000
Δ = 10801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(151)-\sqrt{10801}}{2*1}=\frac{-151-\sqrt{10801}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(151)+\sqrt{10801}}{2*1}=\frac{-151+\sqrt{10801}}{2} $
| -2(2n+7)=-28-6n | | 0.2x+4=9.6 | | -3/5x+3=1/2x-5 | | -21/7x-5x=24 | | x2-|5|x+6=0 | | x2-|5x|+6=0 | | 8-8=8-8(x+5)-8x | | 2x(2x-1)(5x+4)=0 | | 14x+(-14)=6x+10 | | 6+6=6+6(x+2) | | 9-(7n-9)=-8n+1 | | x*0.7=800 | | 6x-7/2x+1=3x+1/X+5 | | 4(6y+3)-23=-16-(3y+1) | | 5(x+4)-(3x+20)=-6 | | 6(6x+4)+6(4x+3)+4=60x+46 | | 3(x-3)=5(2x+1 | | 0=-16t^2+72t-70 | | 4(2y-50=32 | | 0=-16t^2+72t-110 | | 2(n+1)=49 | | -3.9x=44.46 | | -6(x-4)-8=6(x-2) | | 0=-16t^2+72t+40 | | 3x^-6+1=0 | | 2n+4=5n+1 | | 3.9x=44.46 | | 1.5x+1.5=2.25x | | 1.5x+1.5x=2.25x | | F(x-4)=x²+6 | | (x-4)=x²+6 | | A(x-4)=x²+6 |